
Drinking Water Distribution Formula Sheet

Drinking Water Distribution Formula Sheet			
Multiply	Conversions \leftarrow divide	Flow and Velocity	<u> Water - Brake - Motor Horsepower</u>
1 psi 1 ft³ of water	= 2.31 ft of head= 7.48 gallons	"Q" = FLOW, ft³/sec	$WHP = \frac{gpm \times total \ head \ ft}{3960}$
1 ft ³ of water 1 gallon	= 62.4 lbs = 8.34 lbs	"V" = VELOCITY, f/s	$BHP = \frac{gpm \times total \ head \ ft}{3,960 \times Ep}$
1 ppm 1ft³ /sec	= 1 mg/L = 448.8 gpm	"A" = AREA, ft ²	·
1 MGD 1 MGD	= 1.55 ft ³ /sec = 694.5 gpm		$MHP = \frac{gpm \times total\ head\ ft}{3,960 \times Ep \times Em}$
1 HP	= 0.746 kilowatt	$Q = A \times V$	E_p = Pump Efficiency % E_m = Motor Efficiency %
1 mile 1 day	= 5280 ft = 1440 minutes	$V=Q\div A$	Other Formulas and Information
1 lb 1 yd ³ 1 % solution	 453.6 g (ml water) 27 ft³ 10,000 ppm 	$A = Q \div V$	$KWhr\ cost = MHP\ x\ 0.746\ x\ hr\ operation\ x\ cost/kWhr$
Circle Volume ft ³	length $ft \times width ft$ $0.785 \times D \ ft \times D \ ft$ Length $ft \times width \ ft \times height \ ft$ $0.785 \times D \ ft \times D \ ft \times length \ ft$	$Diameter(D) = 2 \times Radius$ $Circumference = 3.14 \times D$ $Perimeter = sum of the sides$ $Dosage = Demand + Residual$ $Residual = Dosage - Demand$ $Demand = Dosage - Residual$	Total Static Head = Static Discharge head + Static Suction Lift Total Static Head = Static Discharge head – Static Suction Head Equivalent Flow Rate (EFR) for C-factor $EFR = \frac{Actual\ flow\ rate\ x\ 100}{actual\ flow\ rate\ x\ 100}$
	0.24 MCD	0.24 MCD	C factor
lbs of chemical = $\frac{\text{ppm} \times 8.34 \times \text{MGD}}{\text{% Purity}}$		gallons = $\frac{\text{ppm x 8.34 x MGD}}{\text{% purity x SG x 8.34}}$	Specific Gravity (SG) = $\frac{\text{wt of a liquid}}{\text{equal wt of water}}$
Dose (ppm) = $\frac{\text{lbs of chemical} \times \% \text{ Purity}}{\text{MGD} \times 8.34}$		Use this formula if gallons are asked for in a math problem. Substitute weight of solution for SG x 8.34 if given.	Strength of Solution = $\frac{\text{wt of chemical}}{\text{wt of solution}} \times 100$
Ignore % purity	if not given in formula.		

Drinking Water Distribution Formula Sheet

